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Abstract

The magnetometer has long been a reliabk inexpensive sensor used in spacecraft momentum management

and attitude estimation. Recent studies have _hown an increased accuracy potential for magnetometer-only
attitude estimation systems. Since the earth's magnetic field is a function of time and position, and since

time is known quite precisely, the differences between the computed and measured magnetic field
componen/s, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of
both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both

trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely
separate systems, using different measurement data. Recently, trajectory estimation for low earth orbit

satellites was successfully demonstrated in ground software using only magnetometer data. This work

proposes a single augmented Extended Kalman Filter (EKF) to simultaneously and autonomously estimate

both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined
rates or gyro-measured body rates.

I. Introduction

The magnetometer, due to its reliability and low cost, has been the focus of many studies in the recent past.
Emphasis has been placed on using the magnetometer alone, without any additional input, to estimate the
spacecraft trajectory (References 1, 2, and 3) and attitude (References 4 and 5). Studies have also been

performed to determine the ultimate accuracy of the magnetometer in estimating attitude when accurate rate
information is available (Reference 6).

In using the magnetometer to estimate attitude, the spacecraft position is required to compute the reference

magnetic field. In using the magnetometer to estimate position, including the spacecraft attitude improves
the results. The data used to estimate either the position or the attitude is a function of the difference

between the observed magnetometer measurements and the reference magnetic field. In this work we use
this difference to estimate both the spacecraft attitude and position. This is an extension of the work

performed by Shorshi and Bar-Itzhack (Reference 1) to add the attitude to the trajectory state vector.

Many of the future missions, such as the Small and Mid-size Explorer Series and university class explorers,
are looking for low cost and autonomous approaches to navigation and attitude estimation. This work could

prove valuable to these missions as a prime navigation system, with coarse accuracy requirements, or a
backup to a prime system where more stringent accuracy is required.

In this work we present the method of expanding the Extended Kalman Filter of Reference 1 to include the

estimation of the spacecraft attitude, and the results of tests on the combined filter using simulated data.
Incorporating the attitude into the filter requires an estimate of the rates. In this work we assume that the
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rates would be provided by gyroscopes. A method similar to that of Challa (Reference 4) or Azor, Bar-
Itzhack, and Harman (Reference 7) could be applied, though, in the absence of gyroscope data.

II. Extended Kalman Filter Algorithm

The EKF algorithm is based on the following assumed models:

System Model: _ = f(X(t),t) + w(t) (1)

Measurement Model: z_k= h_d_ t(_,)) +V__k (2)

where w(t) is a zero mean white process, Y_kis a zero mean white sequence, and X(t) is the state vector
defined as

XT= [a, e, i,f_, t.0, 0, Cd,_]

The first six elements of X(t) are the classical Keplarian elements which determine the spacecraft position

and velocity, namely the semi-major axis (a), eccentricity (e), inclination (i), right ascension of the

ascending node (f_), argument of perigee (¢0) , and true anomaly (0). Cd is the drag coefficient and fl

represents the attitude quaternion.

Measurement Update Stage:

The linearization of equation (2) results in

z_ = Hk _ + vk where Hk = [Ho I H_] (3)

Ho is the measurement matrix for the orbital states and is derived in Reference 1, and H, is the measurement
matrix for the attitude states. The derivation of H, is given in Appendix A. The effective measurement

used by the filter is given as

= B_.m.k- _(_k,tk) (4)

where B_B._kis the magnetic field vector measured by the magnetometer and B(Xk,tk) is the estimated

magnetic field vector as a function of the estimated state _Xk at time tk. The dependence of _(X k,t0 on the

position and the attitude is seen in the derivation of equation (3) in Appendix A.

The state update equation is

x_k(+)=_k(-)+_ (5)

where I_ is the Kalman gain computed according to

Kk = Pk(-)H_r[HkPk(-)Hk r + Rd t (6)

Rk is the measurement noise matrix and the covariance matrix is updated as usual with

Pk(+) = [I- KkHdPk(-)[I - KkHd r + K_RkK_ r (7)

Equation (5) is used to update the orbital states, but not the attitude states. The update of the attitude states
is done as follows. As shown above, the state vector contains the attitude represented by a quaternion. The
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EKFestimatesanerrorin thequaternion,expressedasa vectorof threesmallangles,ct, defined in

Appendix A and derived in Reference 8. This error is combined with the current estimate of the quaternion

to give an updated estimate of the quaternion, which is then propagated to the next time point.

Propagation Stage:

Thefilter dynamics model is given as

X'k+l----Ak(-X-'k)X'k+ [W°lwa o 1 (8)

where x'T= ka, e, i,_,t.o, 0, Cd,__]

Ao is the linearized transition matrix for the orbital states and is a function of the estimated orbital states,

which are elements ofX'. Ao is defined in Reference 9. Aa is the transition matrix for the attitude error, g,
which are also included in X'. Aa is based on the development from Reference 8. The transition matrices

Ao and A_ are first order approximations computed from the Jacobian FkX(_X_k)derived from the linearization
of equation (1).

The covariance matrix is propagated from time tk to time tk+l using:

Pk+,(') = Ak(ZC'(+)k )Pk(+)Ak( __X_'(+)k)T + Qk (10)

Qk is the process noise covariance matrix for both the orbit and attitude states. The orbit states are

propagated by solving equation (1) numerically without the noise component, as in Reference 8. The

dynamics of the attitude states is linear. Assuming a constant angular velocity between gyro measurements,
the attitude states are propagated using

--qk+l(-) = Ok -qk(+) (1i)

where

1 1 1 1 s
Ck=I +hUkT + _.l (WkT)2 + _.i (hUkT)3+ _,i (_x_kT) 4 + "_ (_ISkT) +...

(12)

f 0 w(3) - w(2) w(1)]
-w(3 ) 0 w(1) w(2)]

and tlJk = 0.5/w(2 ) _w(1) 0 O(3) J and w= w_
[.-w(1) - w(2) - w(3)

T is the time between gyro measurements, w is the angular velocity vector, and the arguments 1, 2, 3 refer

to the 3 components of w. Equations (I0) through (12) are particularly suitable when testing with

simulated data, because the rates are almost constant, with added noise. When the filter is applied to real
data, equation (1) will be solved numerically without the noise component, as in Reference 8.

III. Simulation

A basic simulation was developed to test the EKF outlined above. The scenario consisted of simulating a

spacecraft in low-earth-orbit with an earth-pointing attitude, i.e. maintaining a one revolution-per-orbit

(RPO) attitude. The spacecraft axes, or body axes, are aligned with the orbital axes as defined in Figure 1.
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Figure 1. Definition of Orbital Axes

The rotation rate, w, used in equation (I 1), has a component only about the zo axis. The derivation of the
instantaneous rate experienced by the spacecraft is given in Appendix B. The axes labeled with 'I' refer to

the inertial coordinate system. Those marked with 'o' refer to the orbital coordinates. The quatemion

represents the rotation from inertial coordinates to body coordinates. The attitude error, ¢z, represents three

small Euler angles around the body coordinates, which rotate the estimated quaternion to the true
quaternion. The attitude displayed in the table below and in the results section is given in terms of Euler

angles also. These Euler angles describe the attitude with respect to the orbital coordinates. Euler angles
were chosen for the display since the mae Euler angles are all zero.

The parameters which define the baseline simulated orbit and attitude are given below.

Parameter Truth A_:priori
estimate

a (km) 7000 8000
e 0.05 0.06

i (deg) 50 54

(deg) 90 85

¢o (deg) 0 5

0 (deg) 45 50

Ca 0.02 1

roll (deg) 0 10

pitch (deg) 0 10
yaw (deg) 0 10
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IV. Results

The simulation described above was run for 300,000 seconds. Noise was added to the simulated

magnetometer data and to the simulated rate data. The magnetometer measurement noise was 2 milliGauss
and the noise in the measured rate was 0.017 deg/sec '_ .

Figures 2 through 4 show the root-sum-square (RSS) error in the position estimate. The a-priori position
error is 1453 km (computed from the orbital parameters given above). Figure 2 shows the error for the

entire 300,000 seconds, approximately 51 revolutions (the orbital period is 97 minutes). Figure 3 shows the

first 20,000 seconds. The error converges to less than 100 km within 10,000 seconds, which is roughly 1.7
orbits. Figure 4 shows the final 50,000 seconds. The average converged position error is about 4 kin.
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Figure 4. RSS Position Error - Last 50,000 Seconds

Figures 5 through 7 show the RSS attitude error.

within 3,000 seconds as shown in Figures 5 and 6.

than 1 degree.

The attitude converges quickly, to less than 5 degrees,

Figure 7 shows that the average steady state error is less

3o
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Figure 5. RSS Attitude Error
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Figure 6. RSS Attitude Error - First 5,000 seconds
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Figure 7. RSS Attitude Error - Last 50,000 Seconds

Figures 8 through l0 show the RSS velocity error. The a-priori velocity error is 0.96 km/sec. Like the

position, the velocity error converges within 10,000 seconds, as shown in Figure 8. Figure 9 shows that the

error is less than 0.25 km/sec at the end of the first 5,000 seconds. Figure 10 shows that the steady state
velocity error is approximately 0.004 km/sec.
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Figure 10. RSS Velocity Error - Last 50,000 Seconds

Figure 11 shows the RSS measurement residuals for the first 70,000 seconds (the residuals are computed

using equation (4)). The average value is approximately 4 milliGauss. The residuals also converge quickly
from an initial value of 186 milliGauss (RSS).
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Figure 11. RSS Residual
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V. Conclusions and Future Work

This work presents a single augmented Extended Kalman Filter that simultaneously estimates both

spacecraft trajectory and attitude using data from magnetometers and gyroscopes. The results from the first
test of this filter using simulated data, indicate that the filter can indeed estimate both the trajectory and

attitude. Starting with errors (RSS) of over 1400 km in position and 10 degrees in attitude, the filter

converged to less than 5 degrees in attitude within 3,000 seconds and to less than 100 km in position in

10,000 seconds (1.7 orbits). The average steady state values are less than 1 degree for attitude and 4 km

for position. The steady state velocity errors (RSS) are approximately 4 m/sec and the average
magnetometer residual is about 4 milliGauss (RSS).

Further testing will be conducted both with simulated and real spacecraft data. The magnetic field varies
more at higher inclinations. Therefore, the effect of the orbit inclination angle will be studied. Tests will be

conducted as to the filter's ability to estimate attitude and trajectory at low inclinations. The sensitivity to

errors in f_ will be examined. Shorshi and Bar-Itzhack (References 1 and 9) found that the estimation of f_

was critical to the convergence of the position error. Additional errors will be introduced into the simulated

data, e.g. magnetometer and gyro biases. The state vector will be expanded to include these biases and the

ability of the filter to estimate these added states will be tested. Finally, tests with real sparecraft data from

satellites such as the Gamma Ray Observatory, the Upper Atmospheric Research Satellite, and the Extreme
Ultraviolet Explorer will be conducted.
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APPENDIX A - Derivation of the MeasurementModel

The magnetic field vector can be resolved in the magnetic spherical coordinates, as shown in Figure A.1, as

BrF = [B,, BeB, B_B].

Z
!1

Fatrth

center -_,

\ I
\l

X.

Figure A.1. Definition of the Magnetic Spherical Coordinates

The magnetic field at the spacecraft location, computed using the IGRF magnetic field model and the

estimated position, can be written as

_ = I)IDFI3F + n' (A.1)

and the measured magnetic field vector, as measured by the magnetometer can be written as

Ym = DIDIFBF + nrn (A.2)

where

D E = the transformation from inertial to body coordinates

D F = the transformation from magnetic spherical to inertial coordinates

n- = the magnetic field model error

nra = the magnetometer measurement error

The effective measurement, z, is defined as follows

z= Ym- _= D/DIFBF +nrn - I)II)F--BF-n--

Rewriting the wansformation of _F as

(A.3)
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and

^I ^F ^ I F A(DID[BF )DbDI _BF = DbD I B F + (A.4)

n = nm - n'- - _ (A.5)

This leads to

_z= A(DIDIFBF )+ n (A.6)

where

A(DIDIFB_F)= AD_(DIF_BF)+ D_A(D__BF) (A.7)

The second term on the right hand side of equation (A.7) is the derivation of the measurement matrix for the
orbital states given in Reference 9. The expansion of the first term leads to thb measurement matrix for the
attitude states. Rewriting that term as

AD_ (D[_BF)= ADIBI (A.8)

where

B I = the computed magnetic field vector in inertial coordinates

The error in the transformation can be defined as the difference between the true body coordinates and an

intermediate coordinate system, referred to as the computed body coordinate system. The matrix that is

computed is I) I , which is equivalent to a transformation to the computed body coordinate system, which
can be written as

I)Ib D_ b I (A.9)= = DcD b

so

AD_ b I D_ (A.10)= D cD b -

where D_ is the true transformation from inertial to body coordinates. For small attitude error we can

assume that the matrix D b is composed of small angles, thus

[i"Dcb=l - 0-¢0 =l-[ax]

- cp 0

(A.II)

therefore from equation (A. 11)

AD I=I-[__x]D 1- D/=-[zx] DI (A.12)

• Substituting equation (A. 13) into the first term on the right-hand side of equation (A.7) yields
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AD_(DR BF ) = -[_ x]D I .B I = -[_ x]B b = [Bb x)l:_ (A.13)

Substituting equation (A. 13) into equation (A.6) along with the measurement matrix for the orbital states,

gives

_z=[B__x]g + I-/_o + n__=[Ho B[_ xll.x + n (A.14)

where Ho is the measurement matrix for the orbital states, _xo,and x is composed of both the orbital states

and the small angular errors in the attitude, __. Since Bb is not known, the magnetic field vector measured

by the magnetometer is used instead. The combined measurement matrix is then given as

H=[H o [B bx]] = [H o H a ] (A.15)

APPENDIX B - Derivation" of Spacecraft Rotation Rate

The instantaneous rotation rate about the spacecraft Zois derived here from the orbital parameters which

orbit --_
spacecraft

center

Figure B.1. Relationship Between Orbital Angles

describe an elliptical orbit (the average rate is 1 RPO). Figure B.1 defines the angles o., p, z, and 7. The

rotation rate, wz, is defined as

The angle, o_, can be written as

but

w z =5 (B.1)

a = 0 + p (B.2)
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p=n/2 +7 (B.3)
therefore

_=0+_12+ 7

Equation (B. 1) then becomes

wz =a =0 +_?

The relationship between the Keplarian elements, e, 0, and 7 is given as (Reference 10)

tan(y) = e. sin(0)
1 + e. cos(0)

then

d [ e.sin(O) ]d ='_-t 1
_tt tan(y) + e : c--os(O)]

Performing the differentiation in equation (B.7) leads to the following equation

Wz= 6 c°s2(7) Ie2 • sin2(0)0 ]1+ e. cos(0) [I + e- cos(0) + e. cos(0)0

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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